Using Dielectrics and RF Shielding to Increase B_1^+ Efficiency and Homogeneity

J. Tian¹, C. J. Snyder¹, and J. T. Vaughan¹
¹University of Minnesota, Minneapolis, MN, United States

OBJECTIVE
To improve B_1 transmission efficiency and homogeneity for 7T human imaging by using dielectric materials and RF shielding in a 16-channel body coil.

INTRODUCTION
Previous MR experiments have proved 7T body imaging is feasible (1,2). Both theoretical models and experimental images have shown that the reduced wavelengths in the body at 7T create destructive interference patterns which can lead to loss in image homogeneity, RF shading and possible increases in localized SAR. Even the head positioned well outside of the body coil experiences some of the highest B_1 values due to traveling waves or radiation. Dielectric pads have been used to improve body B_1 homogeneity for 3T body imaging (3,4). In order to improve B_1^+ field homogeneity and focus the RF fields into the human torso, theoretical models using RF shielding at different locations and different dielectric materials, placed between the patient and the coil, were calculated.

METHOD and MATERIALS
A 16-channel 33cm long co-axial TEM body coil array was modeled with XFDTD (Remcom, State College, PA). The coil i.d. defined by coaxial elements is 57.5 cm; the coil o.d. defined a 1m long cavity is 62.5 cm. The magnet gradient set (id:67.5cm, od:89cm,length:125cm) and the magnetic bore (id: 90cm; length: 300cm) were also included in simulation.

A hollow cylinder dielectric board was placed closely around the human torso, and its relative permittivity was incrementally adjusted to 2, 5, 10, 20, 40 and 80 (Figure 1a) to test the effect of dielectric in focusing RF fields. RF shielding was placed at the ends of the magnet bore, right above head and around neck (Figure 1 b-c) to observe B_1 variation.

A body model loaded into the coil was derived from the National Library of Medicine (NLM) Visual Human digital atlas whose electrical properties were adjusted to those of 300 MHz. The body model contains 23 bio-tissue materials and has 4.7 million cells with a resolution of 5mm. Each of the body coil’s 16 elements were driven independently with phases corresponding to their azimuthal angles (0, 22.5°, 45°, ...).

RESULTS
Given in Figure 2 is the B_1 distribution within the central sagittal slices for following cases from left to right: 1.) The B_1 fields in body without addition of dielectric material or shielding, 2.) B_1 fields with dielectric material added per Figure 1a and $\varepsilon_r=10$, 3.) $\varepsilon_r=20$, 4.) $\varepsilon_r=80$, 5.) RF shielding added above head per Figure 1b, 6.) RF shielding added per Figure 1c around neck, and case 7.) with both dielectric and RF shielding added around the neck (Figure 1 b-c) to observe B_1 variation.

Note that the radiation and the B_1 field strength within the head reach their minimum value with a dielectric loading of $\varepsilon_r=10$. Additionally, shielding the head around neck also increases the transmit efficiency in body coil. But placing RF shielding above the head or further away from human body does not improve the B_1 field uniformity in torso or reduce the B_1 field within head.

CONCLUSION
We have shown that the relative permittivity with a dielectric loading of $\varepsilon_r=10$ in the space between the human and coil elements improves B_1 efficiency in the torso, but minimal gains are had beyond an $\varepsilon_r=20$. Additionally, shielding the head around neck also increases the transmit efficiency in body coil. But placing RF shielding above the head or further away from human body does not improve the B_1 field uniformity in torso or reduce the B_1 field within head.

References

Acknowledgement NIH-NIBIB-EB000895, NIH-NIBIB-EB006835, NIH-NIBIB-EB007327, NIH-NCRR-P41-RR08079, P41 - RR008079

Table 1. Radiation efficiency with dielectric of different relative permittivity

<table>
<thead>
<tr>
<th>Radiation efficiency</th>
<th>Original</th>
<th>$\varepsilon_r=2$</th>
<th>$\varepsilon_r=5$</th>
<th>$\varepsilon_r=10$</th>
<th>$\varepsilon_r=20$</th>
<th>$\varepsilon_r=40$</th>
<th>$\varepsilon_r=80$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.5515%</td>
<td>18.2493%</td>
<td>13.2775%</td>
<td>8.52257%</td>
<td>11.6633%</td>
<td>15.9953%</td>
<td>17.0577%</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. B_1 field distributions for the following cases 1-7, left to right

(a). (b). (c). (d).